

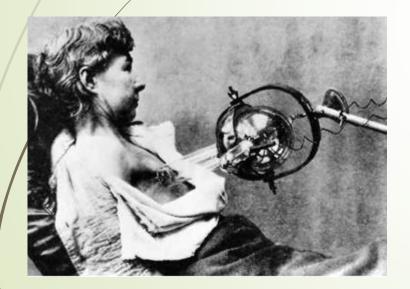
Evidence based medicine for breast radiation therapy and limitations

Pr Catherine DURDUX
HEGP

6th International Congress of Breast Disease centers February 5, 2016

What is « evidence based medicine » in radiotherapy for breast cancer?

Are we all talking about of the same level of evidence?


IA	Evidence from meta-analysis of randomized controlled trials
IB	Evidence from at least one randomized controlled trial
IIA	Evidence from at least one controlled study without randomization
IIB	Evidence from at least one other type of quasi-experimental study
III	Evidence from non-experimental descriptive studies, such as comparative studies, correlation studies, and case-control studies
IV	Evidence from expert committee reports or opinions or clinical experience of respected authorities, or both

Radiation therapy for Breast cancer What have we learned for 120 years?

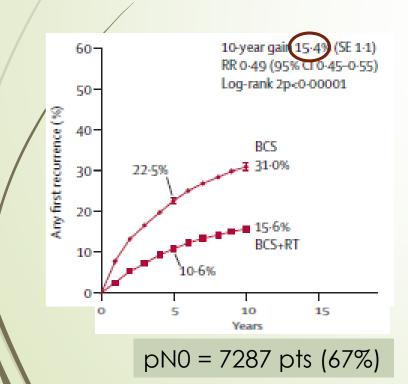
Invasive breast tumors

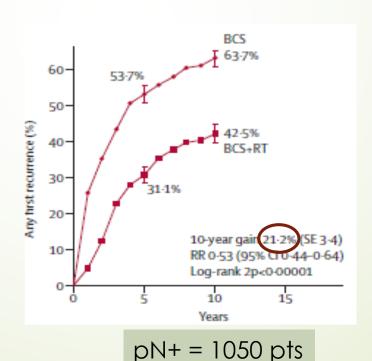
1895 - 1900

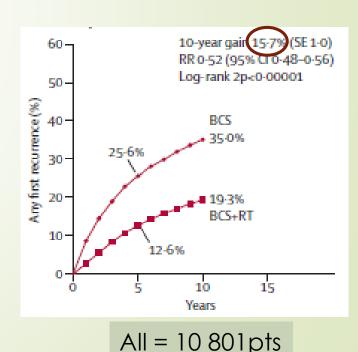
2015

The same active ingredient:

beams of photons X

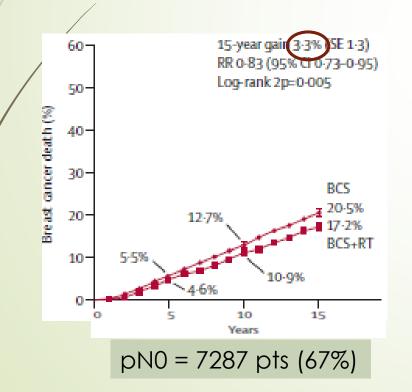


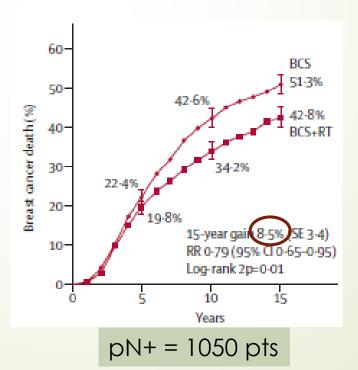

Electrons Protons

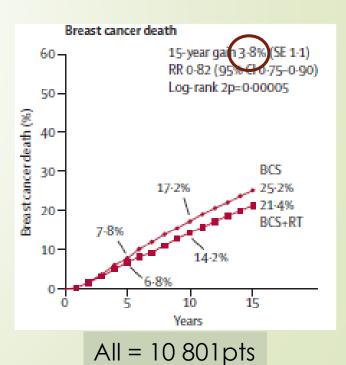

In conservative treatment, post-operative radiotherapy reduces the 10-year risk of any first recurrence

Meta-analysis of Early Breast Cancer Trialists Collaborative Group (EBCTCG)

- 10,801women in 17 trials beginning before 2000 and comparing RT vs no RT
- Median follow-up: 9.5 years





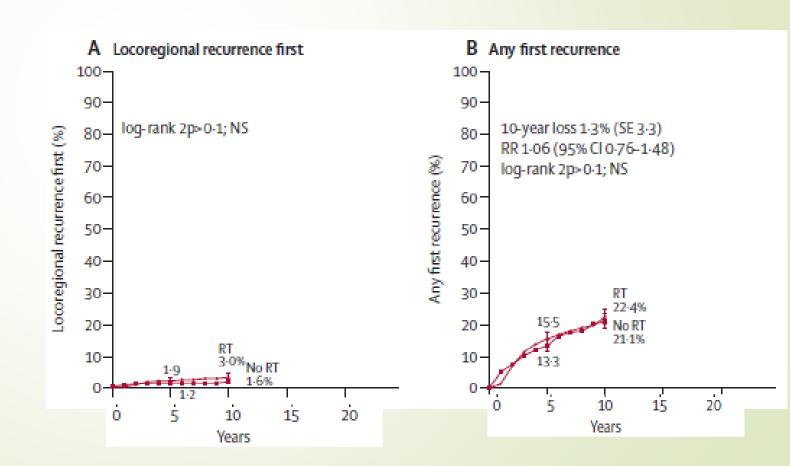


In conservative treatment, post-operative radiotherapy reduces the 15-year risk of breast cancer death

- 10 801women in 17 trials beginning before 2000 and comparing RT vs no RT
- Median follow-up: 9.5 years

Lancet 2011; 378: 107

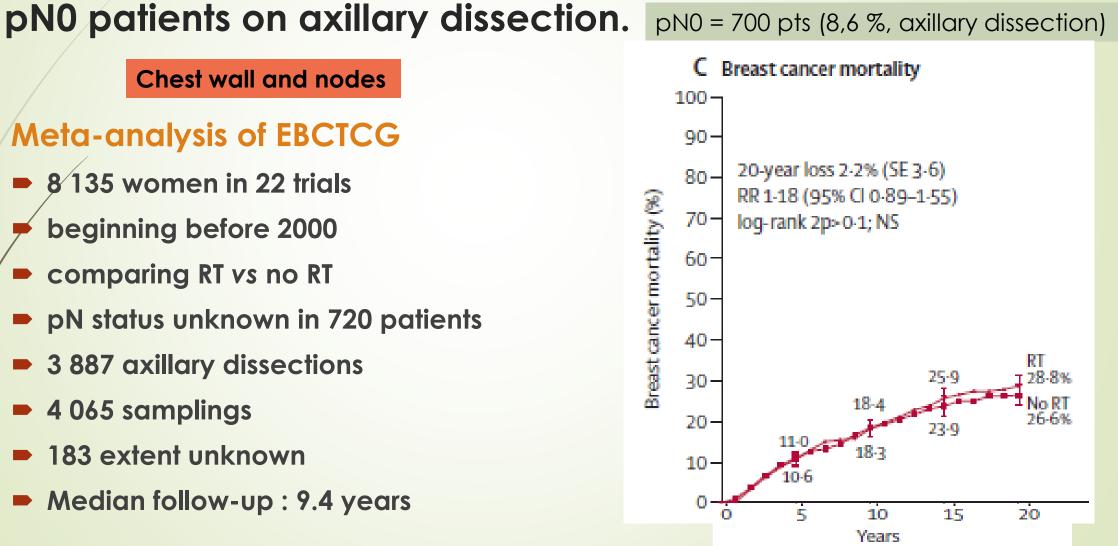
What limitations for these results? The example of radiotherapy


17 trials	Breast irradiation	Boost irradiation	Regional nodal irradiation
76B NSABP B-06 82Y St George's 84P Ontario COG 85B Scottish 85D West Midlands 86C CRC UK	50 Gy (2 Gy/f) c or m 54 Gy d (2 Gy/f) m 40 Gy (2.5 Gy/f) c 50 Gy (2-2.5 Gy/f) m 40 Gy (2.7 Gy/f) or 50 Gy (2 Gy/f) d c Various	None 10 Gy (2 Gy/f) o or e 12.5 Gy (2.5 Gy/f) c 10-30 Gy (2-3 Gy/f) o,e or i 15 Gy (3 Gy/f) e/c Various	None 0-50 Gy (2 Gy/f) m (IMC and SC/AF)† None 50 Gy (2-2.5 Gy/f) m (IMC), 0-45 (2.3 Gy/f) m (SC/AF)† 40 Gy (2 .7 Gy/f) or 50 Gy (2 Gy/f) c (SC/AF)† Various
81L Uppsala-Orebro 87R INT Milan III 90M Tampere 91P SweBCG 91-RT	54 Gy (2 Gy/f) c or m 50 Gy (2 Gy/f) c or m 50 Gy (2 Gy/f) m 48-54 Gy (1.9-2.2 Gy/f) m	None 10 Gy (2 Gy/f) o or e None None	None None None None
89L NSABP B-21 91J GBSG V Germany 92A PMH Toronto 92P BASO II 94C CALGB 9343†† 96Y ABCSG 8a†† 99W PRIME 1††	50 Gy (2 Gy/f) c or m 50 Gy (2 Gy/f) m 40 Gy (2.5 Gy/f) or 50 Gy (2 Gy/f) c or m 45-50Gy (2-2.3 Gy/f) m 45 Gy (1.8 Gy/f) c or m 50 Gy (2 Gy/f) c or m 45-50Gy (2-2.3 Gy/f) m	10 Gy (2 Gy/f) o¶ 10-12 Gy (2.0 Gy/f) e 12.5 Gy (2.5 Gy/f) o or e¶ 10-15 Gy (2-3 Gy/f) e 14 Gy (2 Gy/f) e 10 Gy (0-2 Gy/f) e or I¶ 0-15 Gy (0-2 Gy/f) e	None None None None None None None None
OUT I TAIME III	, (,	., (, -, -	

After mastectomy, post-operative radiotherapy has no significant effect on the 10-year recurrence for pN0 patients on axillary dissection.

Chest wall and nodes

pN0 = 700 pts (8,6 %, axillary dissection)

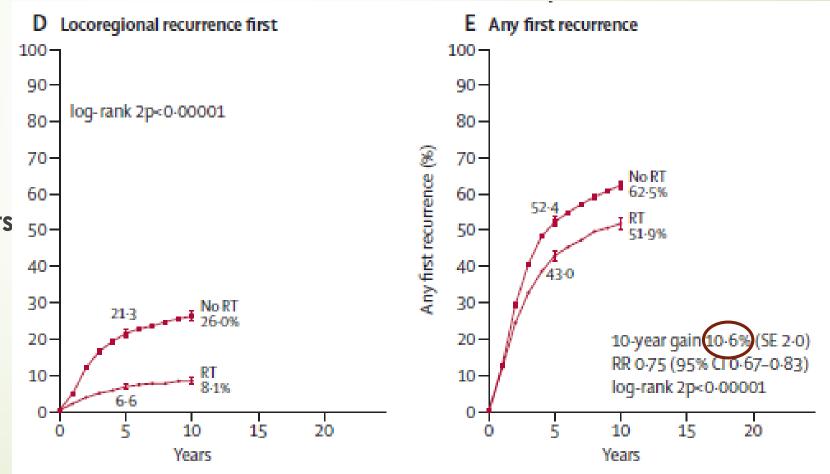

- 8 135 women in 22 trials
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 patients
- /3 887 axillary dissections
- 4 065 samplings
- 183 extent unknown
- Median follow-up: 9.4 years

After mastectomy, post-operative radiotherapy has no significant effect on the 20-year cancer breast mortality for

Chest wall and nodes

- 8 135 women in 22 trials
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 patients
- 3 887 axillary dissections
- 4 065 samplings
- 183 extent unknown
- Median follow-up: 9.4 years

IA

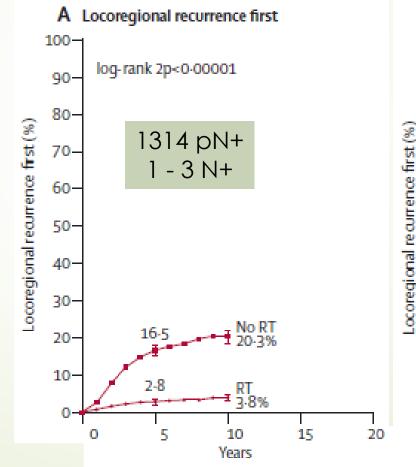

After mastectomy, post-operative radiotherapy reduces the 10-year risk of any first recurrence for pN+ patients

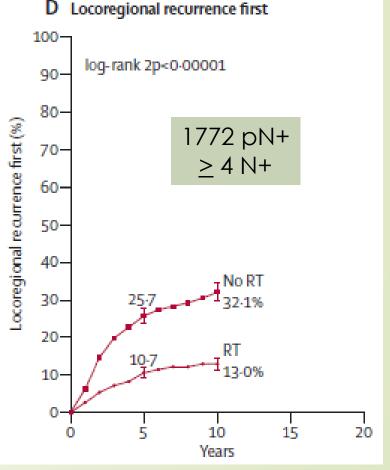
Chest wall and nodes

What do we really know?

pN+=3 131pts (38.4%, axillary dissection)

- 8 135 women in 22 trials
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 pts
- 3 8,87 axillary dissections
- 065 samplings
- 83 extent unknown
- Median follow-up: 9.4 years

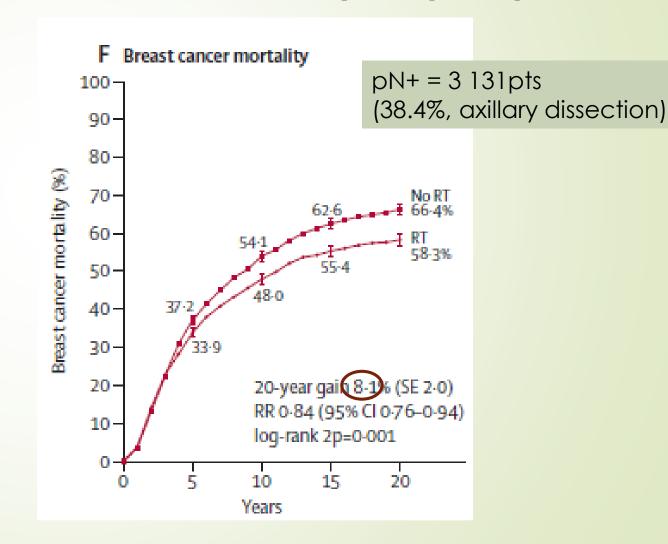

10


What do we really know?

After mastectomy in pN+ patient, there is a benefit of postoperative radiotherapy on loco-regional recurrence rate whatever is the number of positive nodes

Chest wall and nodes

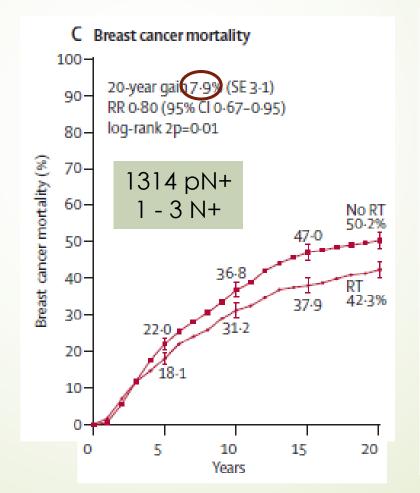
- 8 135 women in 22 trials
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 pts
- 3 887 axillary dissections
- 4 065 samplings
- 183 extent unknown
- Median follow-up: 9.4 years

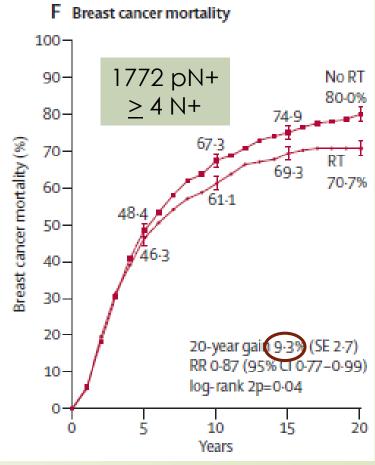


After mastectomy, post-operative radiotherapy reduces the 20-year risk of cancer breast mortality for pN+ patients

Chest wall and nodes

- 8 135 women in 22 trials
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 pts
- 3 887 axillary dissections
- 4 065 samplings
- 183 extent unknown
- Median follow-up: 9.4 years

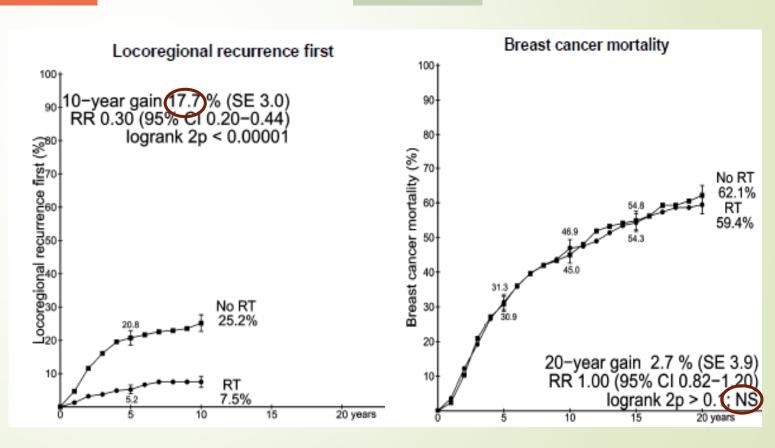



IA

After mastectomy in pN+ patient, there is a benefit of postoperative radiotherapy on breast-cancer mortality whatever is the number of positive nodes

Chest wall and nodes

- **8 135 women in 22 trials**
- beginning before 2000
- comparing RT vs no RT
- pN status unknown in 720 pts
- ► \$ 887 axillary dissections
- 4 065 samplings
- 183 extent unknown
- Median follow-up: 9.4 years



After mastectomy in pN+ patients, the chest wall has to be irradiated to limit loco-regional recurrence

Regional nodes only: 8 trials

1029 pN+

- 2304 women in 8 trials
- beginning before 2000
- comparing RT vs non RT
- pN status known in 1494 pts
- Median follow-up: 7.2 years

What limitations for these results?

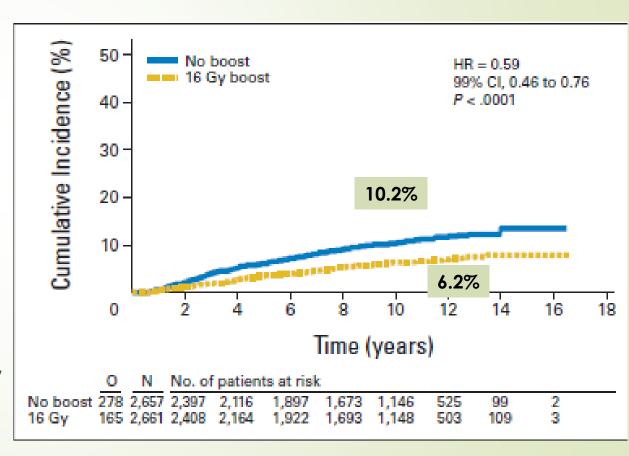
The example of radiotherapy

22 trials

	Chest wall	Supraclavicular Axillary fossa	IMC	Boost on scar
Dose range (Gy)	25 - 60	18 - 60	0 - 60	2 trials

- ✓ Fractionation range : 1.3 Gy 4.5 Gy
- √ Variation of dose per fraction between chest wall and nodes: 4 trials
 - Mix of various techniques: Orthovoltage, Cobalt, Megavoltage, Electrons

Because of an essential long follow-up Meta-analysis couldn't take into account


- Tumor size / pT
- Sentinel procedure in nodal assessment
- Type of surgery and margins status
- Advances in anatomopathology: grading, isolated tumor cells ...
- Adyances in systemic treatment: taxanes, aromatase inhibitors, trastuzumab ...
- After mastectomy, isn't there some benefit in pN0 patients?
 - T3-T4
 - young age, multifocal tumors, grade III, vascular invasion, triple negative
 - and HER 2 positive tumors

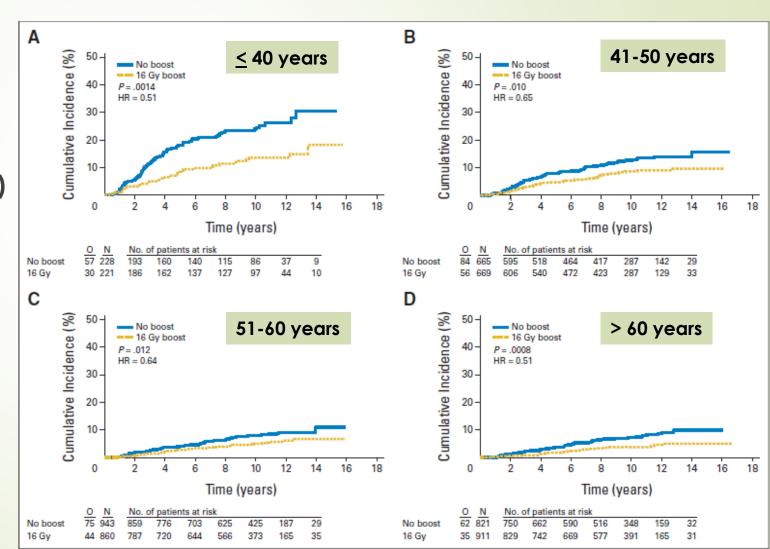
Boost or not boost in conservative treatment? Boost improved local control at ten years.

IB

Phase III of EORTC 22 881-10 882

- **►** 5,318 women
- 31 centers, 9 countries
- From 1989 to 1996
- Comparing boost (16 Gy = 2,661 pts) vs no boost (2,657 pts)
- Microscopically complete resection + axillary dissection
- Whole breast irradiation 50 Gy (5x2Gy)
- Boost = tangential fields, electrons or low dose rate brachytherapy
 - Median follow-up: 10.8 years

17

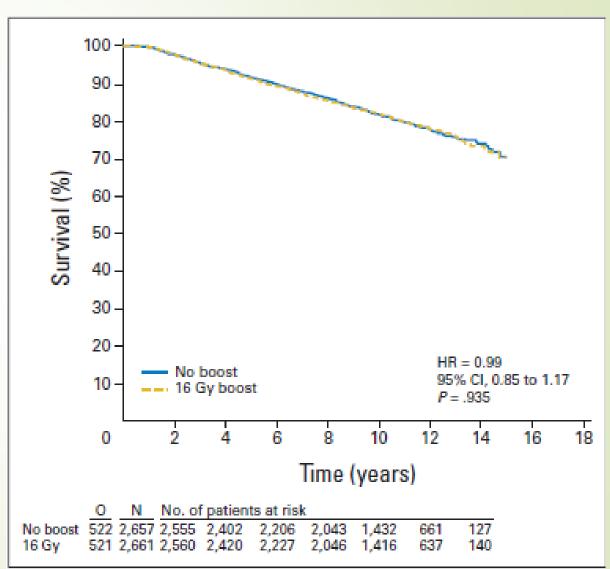

Boost or not boost in conservative treatment? Boost improved local control at ten years in all age groups.

Phase III of EORTC 22 881-10 882

- **5,318** women
- 31 centers, 9 countries
- From 1989 to 1996
- Comparing boost (16 Gy = 2,661 pts)
- vs no boost (2,657 pts)
- Microscopically complete resection
- + axillary dissection
- Whole breast irradiation 50 Gy

(5x2Gy)

- Boost = tangential fields, electron or low dose rate brachytherapy
- Median follow-up: 10.8 years



Boost or not boost in conservative treatment? IB Boost does not improved disease-free survival at ten years.

- Phase III of EORTC 22 881-10 882
- **►** 5,318 women
- 31 centers, 9 countries
- From 1989 to 1996
- Comparing boost (16 Gy = 2,661 pts) vs no boost (2,657 pts)
- Microscopically complete resection + axillary dissection
- Whole breast irradiation 50 Gy

(5x2Gy)

- Boost = tangential fields, electron or low dose rate brachytherapy
- Median follow-up: 10.8 years

IMN or no IMN irradiation? Is the question always discussed?

Is the issue worth debating?

Local recurrences after mastectomy and systemic treatment without RT (%)

	N pts	Total	Chest wall	Clavicular	Axillary	IMN
NSABP 2004	5758	19,8	56,9	22,6	11,7	<1
IBCSG 2003	5352	21	53	26	13	1
MD Anderson Cancer Center 2005	1031	19	67*	43	11	0

- Numerous retrospective studies with conflicting results
- Pulmonary and cardiac toxicity

on surgical dissection

Tumor	Axillary status			
location	pN+	pN0		
Internal	32-65%	7–20%		
Central	29-48 %	0-12%		
External	22-42 %	3-13%		
1 All	28-52%	4–16%		

Chen RC. JCO 2008. 26: 4981

IMN or no IMN irradiation? The clever Danish trial: the natural random!

3,089 early-stage node-positive breast cancers

Thorsen LB.JCO 2015, in press

- Mastectomy or conservative treatment with axillary dissection + systemic therapy
- Natural random right breast vs left breast; assessment in intent to treat
- Chest wall irradiation for both groups; with assurance quality of IMN dose coverage
- Median follow-up: 8.9 years

		IMNI = right breast 1492 pts	No IMNI = left breast 1597 pts	HR
	8-year overall survival (first endpoint)	75.9%	72.2%	Death 0.8 [0.72 – 0.94] ; p = 0.005
	8–year breast mortality	20.9%	23.4%	Death 0.85 [0.73 – 0.98] ; p = 0.03
\	Distant recurrences	27.4%	29.7%	0.89 [0.78 - 1.01] ; p = 0.07

IMN or no IMN irradiation? Three randomized trials

\sim	1

IB		Hennequin C. Red J2013. 86 : 860	Poortmans P. N Engl 2015. 373 : 317	Whelan TJ. N Engl 2015. 373 : 307	
		French trial 1991-1997	EORTC 1996-2004	MA-20 (Canadian) 2000-2007	
N pts		1334	4004	1832	
	Surgery	Mastectomy	Conservative (76%) Mastectomy	Conservative	
	Inclusion criteria	pN+	pN+	pN+	
		pN0: internal/central	pN0: internal/central	pN0: High risk	
	RT: control arm	Chest wall	Chest wall / Breast	Breast	
		Supraclav/axillary			
	RT: experimental arm	IMN	IMN	IMN	
			Supraclav	Supraclav/axillary	
	Benefit				
	10-year overall survival	3.3%; p = 0,8	1.6% ; p= 0.05	1%; p = 0.38	
	10-year DFS	3.3%; p = 0,35	3% ; p = 0.04	5% ; p = 0.01	

IMN or no IMN irradiation? One meta-analysis

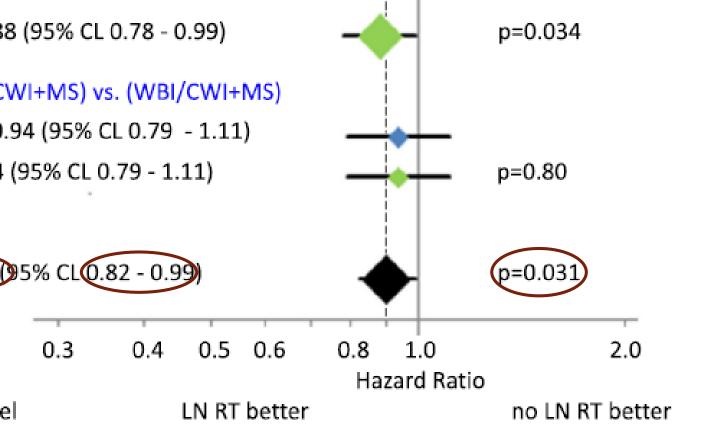
Budach et al. Radiat Oncol 2015. 10:258

Comparison I: (MS+IM)+(WBI/CWI) vs. (WBI/CWI)

MA.20 [10]: n=1832; HR 0.91 (95% CL 0.72 - 1.13)

EORTC [12]: n=4004; HR 0.87 (95% CL 0.76 - 1.00)

Subtotal*: n=5836; HR 0.88 (95% CL 0.78 - 0.99)


Comparison II: IM+(WBI/CWI+MS) vs. (WBI/CWI+MS)

French [13]: n=1334; HR 0.94 (95% CL 0.79 - 1.11)

Subtotal: n=1334; HR 0.94 (95% CL 0.79 - 1.11)

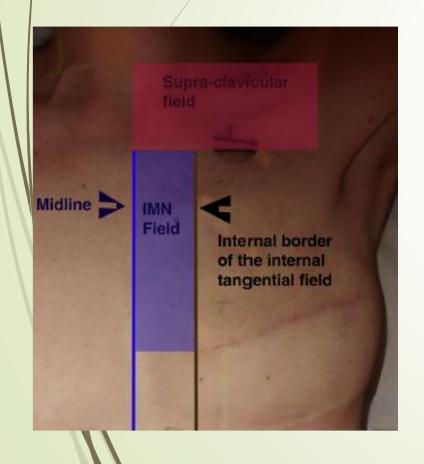
Comparison I+II

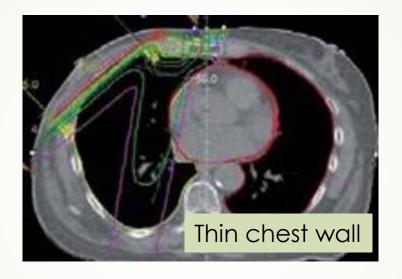
Total**: n=7170; HR 0.90 (95% CL 0.82 - 0.99)

Overall Survival

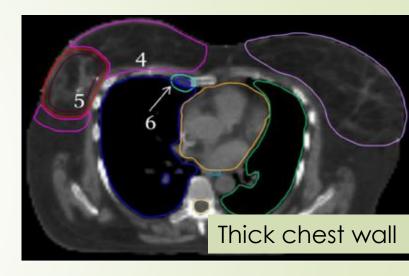
IA?

*= fixed effect model


** = random effect model

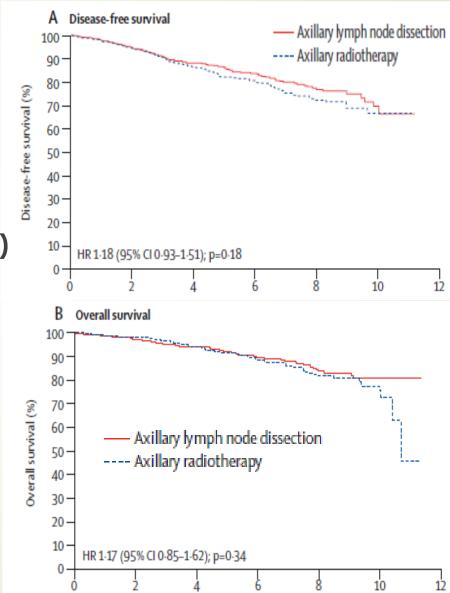

23

Where is the IMN?


3D technique

2D technique

Axillary nodes: Surgery or radiotherapy?


24

The AMAROS trial

Phase III of EORTC 22 023-10 981

- Non-inferiority trial From 2001 to 2010
- **4,823 women with T1-T2**
- 34 centers, 9 countries
- Comparing axillary dissection (2,402 pts) vs RT (2,404 pts)
- 1425 pts (30%) with positive sentinel nodes:
 - $\sqrt{704}$ pts = axillary dissection (median : 15 nodes)
 - √ 681 pts = RT
 - Axillary RT = 50 Gy (5x2Gy) on levels I to III
- Axillary RT allowed if \geq 4 positive nodes (41 pts)
- Median follow-up: 6.1 years

Lancet Oncol 2014. 15: 1303

Axillary nodes: Surgery or radiotherapy?

25 The AMA	ROS tri	al					
		Lar	ncet Oncol 2014. 15 : 1303				
			Axillary dissection 704 pts	Axillary RT 681 pts NA 7			
		pN+	220 (33%)				
	A	xillary recurrence	4				
N:	5-year	axillary recurrence rate	0.43 [0-0.92]	1.19 [0.31-2.08]			
		Axillary lymph node disse	ection Axillary radio	therapy p value			
	Clinical sig	gn of lymphoedema in the ipsila	teral arm				
	1 year	114/410 (28%)	62/410 (15%	%) <0.0001			
	3 years	84/373 (23%)	47/341 (149	%) 0-003			
	5 years	76/328 (23%)	31/286 (119	%) <0.0001			
	Arm circun	Arm circumference increase ≥10% of the ipsilateral upper or lower arm, or both					
	1 year	32/410 (8%)	24/410 (6%)	0-332			

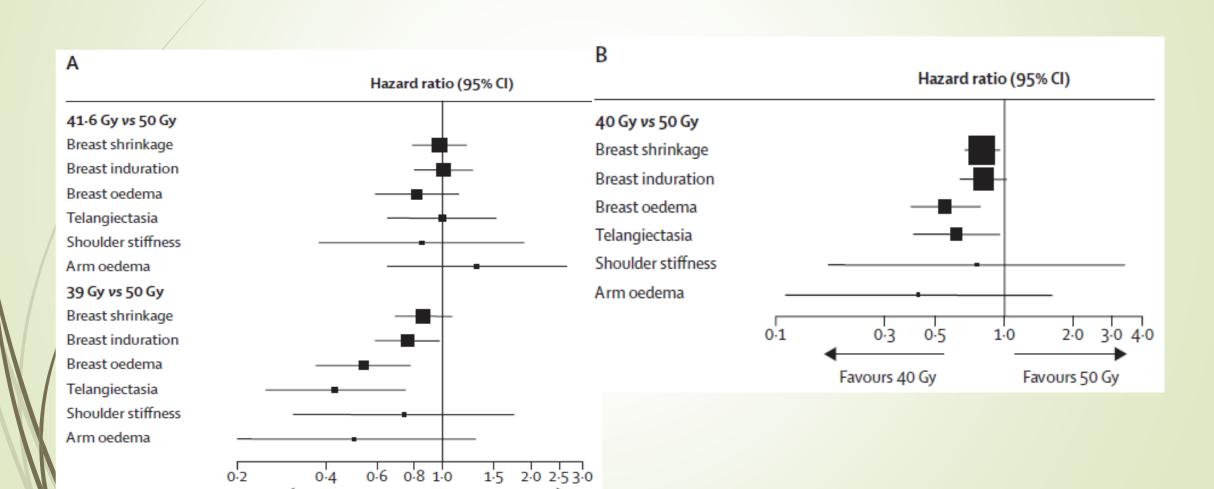
Fisher B. New Engl 2002. 347 : 567 Louis-Sylvestre C. JCO 2004. 22:97

22/341 (6%) 38/373 (10%) 0.080 3 years 43/328 (13%) 16/286 (6%) 0.0009 5 years

What about fractionation? Conservative treatment

- Hypofractionation: daily dose > 2Gy
- Evidence-based guidelines Task force of ASTRO
- Randomized trials of whole breast irradiation comparing CF vs HF
- Clinical eligibility criteria:

- 1. Patient is 50 years or older at diagnosis.
- 2. Pathologic stage is T1–2 N0 and patient has been treated with breast- conserving surgery.
- 3. Patient has not been treated with systemic chemotherapy.
- 4. Within the breast along the central axis, the minimum dose is no less than 93% and maximum dose is no greater than 107% of the prescription dose (±7%;) (as calculated with 2-dimensional treatment planning without heterogeneity corrections).


What about fractionation? Conservative treatment

	Canada 1234 pts		Royal Marsden 1410 pts		START A 2236 pts		START B 2215 pts	
Breast conserving	100% 100%		100	0%	85	%	92%	
T1-T2			94	%	< 2cm	= 51%	< 2cm = 64%	
pN0	100%		40	%	69	%	74%	
No CT	89	9%	86	%	65	%	78%	
Boost (Gy)			14,	14, 7f 10, 5f		10, 5f		
Nodal RT	0	0%		%	14%		7 %	
Doses (Gy)	42.5, 16f	50, 25f	42.5, 16f 39, 13f	50, 25f	41.6, 13f 39, 13f	50, 25f	40, 15f	50, 25f
Days	22	35	3.	5	3	5	3.	5
Median FU (year) Time point		2 0	9.7 10		9. 10		9, 1	
Ipsi breast rec	6,2%	6,7%	9.6% 14.8% p	12.1% =0 · 027	6.3% 8.8%	7.4%	4,3%	5,5%
Cosmetic results	69.8%	71.3%	74.4% 58% ps	71.2		Slide	e 28	

What about fractionation? START A and B: cosmetic results

Favours 50 Gy

Favours 41.6 Gy or 39 Gy

Conclusions

- In breast cancer, large part of our routine practice is based on level I of evidence for radiotherapy
- In breast cancer, the necessity of a long follow-up impacts on the conclusions of the phase III trials because of the constant technological progress.
- The quality of the techniques of irradiation must be assessed by expert committee for every randomized trial to validate the results of the trial
- Evidence based medicine stays mandatory to compare modern techniques and choose the best one